Todas las categorías
EN
Preguntas Frecuentes

How Excessive Temperature Rise Ages Transformer Insulation? — Comprehensive Methods to Control Temperature Rise

Inicio> Preguntas Frecuentes

How Excessive Temperature Rise Ages Transformer Insulation? — Comprehensive Methods to Control Temperature Rise

2025.12.06

How Excessive Temperature Rise Ages Transformer Insulation? 

— Comprehensive Methods to Control Temperature Rise

 

Transformers are the core equipment of power systems, and their operating temperature directly impacts the lifespan of insulation materials and grid safety. Research by the International Electrotechnical Commission (IEC) indicates that excessive temperature rise is the leading cause of transformer failures. This article delves into the relationship between temperature rise and insulation aging and provides a full-process temperature control solution compliant with international standards (IEC/IEEE), helping extend equipment lifespan by over 10 years.

 

Contenido

1. How Does Temperature Rise "Kill" Transformer Insulation? — Irreversible Aging Mechanisms

● Core Law of Thermal Aging: Arrhenius Effect

The lifespan of insulation materials decays exponentially with temperature. As transformer temperature increases, molecular thermal motion intensifies, leading to an exponential rise in bond-breaking probability and eventual structural collapse. This follows the Arrhenius equation:

L = L₀ × e^(-Eₐ/kT)

-L:Expected lifespan (years) at temperature T

-T:Hotspot absolute temperature (Kelvin = ℃ + 273)

-Eₐ:Activation energy of the material (Joules)

-k:Boltzmann constant (1.38×10⁻²³ J/K)

Punto clave: For every 6–10°C increase, insulation lifespan shortens by ~50%. For example, Class B insulation operating at 130°C will see its lifespan drop from 20 years to 10 years at 138°C.

Clase de aislamiento

Max Allowable Temp. (℃)

Reducción de la vida útil a +8 °C

Materiales típicos

Clase A

105

50%

Impregnated cellulose

clase B

130

50%

Mica-glass fiber

Clase f

155

50%

High-performance resin

clase H

180

50%

Silicone rubber composites

Table 1: Insulation Class vs. Temperature Lifespan (IEC 60085 Standard)

 

● Triple Damage Mechanisms of High Temperatures

(1)Mechanical Strength Collapse: At 130°C, insulation paper tensile strength drops by 80% (IEEE C57.91).

(2)Dielectric Performance Degradation: For every 10°C rise, dielectric loss increases by 300%.

(3)Oil-Paper Synergistic Deterioration: High temperatures accelerate oil oxidation. When acid value exceeds 0.5 mgKOH/g, insulation paper lifespan shortens by 60%.


 13

2. Three Root Causes of Excessive Temperature Rise and Solutions

● Excessive Load Current Leading to Copper Loss

When transformer load exceeds design capacity, winding current increases. Per Joule’s law (P=I²R), resistive losses rise quadratically with current, converting directly into heat and raising winding temperature.

Repercusiones:

(1)10% current increase → 21% higher copper loss → ~15°C temperature rise.

(2)Long-term overload causes hotspot temperatures to exceed design limits, accelerating insulation aging.

Caso de estudio:A 110kV transformer running at 20% overload for 3 years saw insulation paper polymerization drop to 40% of its initial value, forcing early retirement.

● Cooling System Efficiency Decline

Cooling system failures directly impair heat dissipation.

Temas:

(1)Dust/clogging on radiators: 1mm dust reduces efficiency by 30%.

(2)Fan failures:Stoppages raise oil temperature by 20–30°C.

(3)Pump inefficiency:Low oil flow increases hotspot temps by 40°C+.


Consecuencia:Heat accumulation leads to insulation                Descompostura.

● High Ambient Temperatures

Ambient temperature directly affects cooling efficiency.

Repercusiones:Every 1°C rise in ambient temperature increases internal temps by 0.5–1°C.

Sunlight can raise tank surface temps by 20°C+.

Caso de estudio:A substation in Africa required 15% load reduction at 40°C to ensure safe operation.

 16

3. Four-Dimensional Temperature Control System

● Smart Load Management

medidas:Install real-time monitoring, dynamic load control, and a three-tier alert system (80% warning, 90% alarm, 100% auto load-shedding) per IEC 60076-7.
Effect: Reduces overloads by 82%, cuts temperature fluctuations from ±12°C to ±5°C, and extends lifespan by 9.2 years (per Zhejiang 220kV substation data).

● Enhanced Cooling System Upgrades

medidas: Use corrugated radiators (50% more surface area), smart variable-speed fans, and oil-flow optimizers.
Effect: Lowers top oil temp from 78°C to 60°C, saves 280,000 kWh/year (per Guangdong 500kV substation).

● Oil Quality Management

medidas: Deploy online vacuum oil purifiers (<10ppm moisture, acid value ≤0.03 mgKOH/g) and antioxidant additives.

Efecto:Reduces average oil temp by 14°C and extends  oil replacement cycles to 7 years (per Inner Mongolia wind farm).

17

● Environmental Thermal Optimization

medidas: Install reflective canopies (88% solar reflectivity), smart ventilation (20–30 air changes/hour), and nano-reflective flooring.
Efecto:Cuts surface temps by 28°C and reduces failures from 7/year to 1 (per Hainan 110kV substation).

Solution Package

Typical Cost (USD 10k)

Temp. Reduction (℃)

Período de retorno de la inversión

Basic (1+2)

80-150

12-18

2.8-3.5 años

Standard (1–3)

180-250

18-22

2.2-2.8 años

Premium (1–4)

280-350

22-26

1.8-2.3 años

  

En resumen

Implementing smart monitoring, cooling upgrades, oil management, and environmental controls can reduce transformer temperatures, extend lifespan by 815 years, and cut failure rates by 60%. Prioritize smart monitoring (ROI: 23 years), followed by cooling upgrades (1520°C reduction) and oil management (7-year replacement cycles). This approach lowers annual maintenance costs by 3050%, offering a cost-effective solution for grid reliability.

 

Contáctenos

lushan, est.1975, es un fabricante profesional chino especializado en transformadores de potencia y reactores para50+ años. Los productos líderes son transformador monofásico, trifásico solo transformadores,transformador eléctrico,transformador de distribución, transformador reductor y elevador, transformador de baja tensión, transformador de alta tensión, transformador de control, transformador toroidal, transformador de núcleo R;Inductores de CC, reactores de CA, reactores de filtrado, reactores de línea y carga, bobinas, reactores de filtrado y productos intermedios de alta frecuencia.

 

Nuestro poder Los transformadores y reactores se utilizan ampliamente en 10 áreas de aplicación: tránsito rápido, maquinaria de construcción, energía renovable, fabricación inteligente, equipos médicos, prevención de explosiones en minas de carbón, sistema de excitación, sinterización al vacío (horno), aire acondicionado central.

 

Conozca más sobre transformadores de potencia y reactores:www.lstransformer.com.

 

Si desea obtener soluciones personalizadas para transformadores o reactancias, póngase en contacto con nosotros.

WhatsApp:+86 13787095096
Correo electrónico: marketing@hnlsdz.com