Alle Kategorien
EN
FAQ

How to prevent Transformer Sudden Short-Circuit Failure? —Analyzing Short-Circuit Resistance Verification and Structural Reinforcement Solutions

Startseite > FAQ

How to prevent Transformer Sudden Short-Circuit Failure? —Analyzing Short-Circuit Resistance Verification and Structural Reinforcement Solutions

2025.06.24

How to prevent Transformer Sudden Short-Circuit Failure?

—Analyzing Short-Circuit Resistance Verification and Structural Reinforcement Solutions

 

In power grid systems and industrial distribution, "transformer sudden short-circuit leading to winding deformation and insulation breakdown" has become a global challenge for electrical equipment reliability. According toIEEE C57.12.00 statistics, short-circuit current impacts can subject windings to electromagnetic forces exceeding 100 kN, causing 40% of transformers to fail after their first short-circuit event. This article systematically explains short-circuit resistance verification processes and structural reinforcement technologies based on international standards likeIEC 60076-5 und  IEEE C57.12.90, supported by cross-regional engineering validation data.

 

Inhalt

1. Destruction Mechanism and Risk Quantification of Short-Circuit Current

 Electromagnetic Force Impact of Short-Circuit Current

(1)Short-Circuit Current Calculation and Electromagnetic 

Force Generation When a short-circuit occurs on the transformer’s secondary side, the primary current surges to 10–25 times its rated value, determined by the transformer’s impedance voltage percentage (%).

 

 

Formel:

wps1

 

Variablendefinitionen:

·wps2 : System rated voltage

·wps3: Impedance voltage percentage (typical range: 4%–12%)

·wps4: Transformer rated current

 

Ejemplo: A 1000 kVA transformer with Z%=6% and INenn = 1443A has a short-circuit current of:

wps5

 

4


(2)Direct Mechanical Damage from Electromagnetic 

Forces Per the Lorentz force formula, electromagnetic forces between adjacent winding conductors are:

wps6 

Variablendefinitionen:

·wps7: Leakage flux density (0.5–1.2 T, determined by winding spacing and current)

·wps8:Short-circuit current

·wps9: Conductor effective length

 

Ejemplo:If B=0.8T and L=2m, the force is: F=0.8×24,050×2=38,480N(≈38.5kN)

 

Fehlermodi:

·Axiale Kompression: High-voltage windings experience inward pressure, leading to inter-turn insulation crushing.

·Radiale Ausdehnung: Low-voltage windings expand outward, causing support strut fractures and eventual collapse.

 

 Thermal Effects and Insulation Degradation

(1) Joule Heating Mechanism:

Short-circuit current generates heat via winding resistance:

wps10

 

Variablendefinitionen:

·R: Winding resistance (Ω)

·t: Short-circuit duration (typically ≤2 seconds)

·c: Specific heat capacity (copper: 385 J/kg·K)

·m: Conductor mass

Ejemplo: For a 50 kg copper conductor with AIsc =24kA and t=1s:

wps11

 

(2)Insulation Failure Process:

·Thermische Zersetzung: Epoxy resin carbonizes when temperatures exceed 105°C (Class A insulation limit).

 

·Dielectric Strength Reduction: Insulation paper breakdown voltage drops 5%–8% per 10°C rise (IEC 60076-5).

 

·Inter-Turn Short Circuits: Partial discharge inception voltage falls from 15 kV to below 6 kV, causing permanent damage.

 

5


2.International Standards for Short-Circuit Resistance Verification

 IEC 60076-5:Dynamic Stability Testing Core standard for transformers ≤35 kV.

(1)Testprozedur:

·Pre-short-circuit state:Apply rated current; monitor temperature and vibration.

 

·Short-circuit impulse:Apply symmetrical current at 75% tap position for 0.25 seconds.

 

·Repeat three times to assess cumulative damage.

 

(2)Bestehenskriterien:

·Reactance change ≤2%

 

·Winding deformation ≤1.5 mm (measured via laser displacement sensors).

 

 IEEE C57.12.90:Mechanical Strength Validation Key standard for large-capacity transformers in North America.

(1)Anforderungen:

Capacity (kVA)

Short-Circuit Cycles

Axial Force Limit (kN)

≤ 2500

3

80

2501-10,000

2

150

> 10,000

1

300

 

(2)Testmethoden:

·Static pressure simulation using hydraulic cylinders (60-second hold).

 

·Vibration frequency sweep (10–2000 Hz); natural frequency shift ≤5%.

 

3. Structural Reinforcement Solutions for Enhanced Short-Circuit Resistance

 Optimized Winding Support Systems

(1)Verstärkungstechniken:

·Epoxy-Resin Impregnated Struts: 

Glass-fiber-reinforced epoxy (bending strength ≥350 MPa, 4× stronger than wood) reduces radial deformation from 3.2 mm to 0.8 mm.


1


·Axial Compression Systems: 

Disk spring assemblies (preload ≥50 kN) mitigate  axial compression, increasing withstand cycles from 1 to 3 (per IEC 60076-5).

 

(2)Leistungsvergleich:

 

Parameter

Traditionelle

Verstärkt

Axial Deformation (mm)

3.2

0.8

Short-Circuit Cycles

1

3

 

 Core and Clamping Structure Enhancements

(1)Verstärkungstechniken:

·Low-Hysteresis Silicon Steel: 23ZDKH90 steel reduces core vibration energy transfer by 40%, avoiding resonance (ISO 10816-3 compliant).

 

·Multi-Layer Welded Clamps: Q345B steel (yield strength 345 MPa, 47% higher than Q235) absorbs 300 kN axial forces (meets IEEE C57.12.90).

 

(2)Mechanische Eigenschaften:

Werkstoff

Streckgrenze (MPa)

Damping Ratio (ξ)

Q235 Stahl

235

0.02

Q345B Stahl

345

0.05

 

Zusammenfassend

Conclusion Modern transformers reinforced viaIEC 60076-5 und IEEE C57.12.90 standards can withstand ≥50 kA short-circuit currents (IEC Level 4). Global cases show a 70% reduction in annual failure rates (ABB 2023 Whitepaper). For customized solutions, contact our technical team for simulation, testing, and validation services.

 

Kontaktieren Sie uns

LuShan, Europäische Sommerzeit.1975, ist ein chinesischer professioneller Hersteller, spezialisiert auf Leistungstransformatoren und Reaktoren für50+ Jahre. Führende Produkte sind Einphasentransformator, Dreiphasentransformator Isolierung Transformatoren, elektrischer Transformator, Verteiltransformator, Abwärts- und Aufwärtstransformator, Niederspannungstransformator, Hochspannungstransformator, Steuertransformator, Ringkerntransformator, R-Kern-Transformator;Gleichstrominduktoren, Wechselstromreaktoren, Filterreaktoren, Netz- und Lastreaktoren, Drosseln, Filterreaktoren und Zwischen- und Hochfrequenzprodukte.

 

Unsere Kraft Transformatoren und Reaktoren werden in zehn Anwendungsbereichen häufig eingesetzt: Schnellverkehr, Baumaschinen, erneuerbare Energien, intelligente Fertigung, medizinische Geräte, Explosionsschutz in Kohlebergwerken, Erregersysteme, Vakuumsintern (Öfen), zentrale Klimaanlagen.

 

Erfahren Sie mehr über Leistungstransformatoren und Reaktoren:www.lstransformer.com.

 

Wenn Sie maßgeschneiderte Lösungen für Transformatoren oder Drosseln wünschen, kontaktieren Sie uns bitte.

WhatsApp:+86 13787095096
E-Mail: marketing@hnlsdz.com